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1. Introduction

String theory is a useful tool to study dynamics of gauge theories. An advantage of using

string theory for the analysis of gauge theories is that we can translate quantum correc-

tions and non-perturbative effects in gauge theories to classical phenomena associated with

geometries of spacetime and brane configurations.

Among many kinds of dualities, the duality between conifolds and N = 1 supercon-

formal gauge theories attracts a great deal of attention. The first non-trivial example of

this duality was proposed in [1]. It is the duality between the conifold over T 1,1 and a

certain SU(N) × SU(N) superconformal gauge theory at the IR fixed point. This duality

has been generalized to more complicated ones. The recent discovery of the explicit met-

rics of classes of Sasaki-Einstein manifolds [2 – 4] provides us many examples of dualities

we can explicitly check the validity. For example, it has been confirmed that the vol-

umes of the Sasaki-Einstein manifolds and some supersymmetric cycles in them correctly
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reproduce the central charges and conformal dimensions of baryonic operators in super-

conformal gauge theories, which can be determined on the field theory side with the help

of the a-maximization technique [5].

There are also many attempts to generalize the correspondence to non-conformal cases.

One way to break the conformal symmetry on the field theory side is to change the ranks

of the SU(N) gauge groups. This is realized by the introduction of fractional D3-branes

on the gravity side. The coupling running [6, 7] and the duality cascade [8] caused by the

introduction of the fractional branes are studied by using dual gravity solutions.

The brane tilings [9 – 14], proposed by Hanany et al. are different, but closely related

way to realize N = 1 quiver gauge theories with fivebranes in type IIB theory. The brane

configurations are conveniently described with tilings on tori. Each face is identified with a

stack of N D5-branes, and an SU(N) gauge group lives on it. An edge shared by two faces

represents the intersection of the D5-branes and NS5-branes, and corresponds to a chiral

multiplet belonging to a bi-fundamental representation of the two gauge groups associated

with the two faces. Thus, the tilings can be regarded as dual graphs of quiver diagrams

drawn on tori, which are often called periodic quiver diagrams. An advantage of the brane

tilings (and the periodic quiver diagrams) to the ordinary quiver diagrams is that we can

easily read off the superpotential from the diagram.

There are many rules proposed to read off the properties and phenomena in gauge

theories from the diagrams. For example, we can easily obtain anomaly free charge as-

signments of global symmetries from the brane tilings [15]. We can also determine IR

behavior of non-conformal gauge theories depending on the rank distributions [16]. It is

important to obtain these relations between the graphical information in the tilings and

the properties of gauge theories directly by using action or equations of motion of branes

and supergravity. In this paper, we particularly discuss how anomalies in gauge theories

show up in the brane tilings. Anomalies arise as one-loop corrections in gauge theories, and

have topological nature in the sense that their coefficients are quantized, and are invariant

under continuous variation of parameters. This makes analysis on the string side tractable.

In general it is difficult to determine the precise shape of branes in a brane system. By the

reason we mention above, for the analysis of anomalies, we do not need the precise shape

of the branes. We only need the topological structure and the asymptotic shape of branes.

In [17], the relation between cancellations of gauge (SU(Nc)
3) and U(1)B SU(Nc)

2 anoma-

lies and flux conservations on the brane system is discussed, and it is shown that if the

boundary conditions imposed on the fields on branes at fivebrane junctions are satisfied,

the anomaly cancellations are automatically realized. In this paper, we discuss so-called

’t Hooft anomalies which are in general not canceled. We show that some of the anomalies

can be reproduced as the variations of the classical brane action by gauge transformations.

(In this paper we are not very careful about signs.)

This paper is organized as follows. In § 2, we briefly explain the relation between

the tiling diagrams and the structure of the branes in the system. In § 3, we identify

global U(1) symmetries in gauge theories with gauge symmetries in the brane system.

Using this identification, we compute some of ’t Hooft anomalies, in § 4. We only discuss

U(1)3B , U(1)M U(1)2B and U(1)R U(1)2B anomalies, where U(1)B , U(1)M , and U(1)R are

– 2 –
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Figure 1: A toric diagram (a) and the corresponding web diagram (b).

the baryonic, mesonic (flavor), and R-symmetries, respectively, which are defined in § 3.

Among these three classes of anomalies, the U(1)3B anomalies are known to vanish, and we

use this fact to fix the ambiguity of the regularization. We show that the other two kinds

of anomalies are reproduced as variations of the classical brane action. The last section is

devoted for discussions. In appendix A, we discuss the action of fivebrane junctions and

boundary conditions imposed on the gauge fields. In appendix B, we solve a differential

equation which appears in § 4.

2. Brane tilings and D5-NS5 systems

The toric diagrams and web diagrams (figure 1) are often used to describe structure of toric

Calabi-Yau manifolds, and we can obtain information of the corresponding quiver gauge

theories from these diagrams. Toric diagrams are convex polygons in a two-dimensional

lattice. (We consider only Calabi-Yau three-folds, which are dual to the D5-NS5 systems

we discuss in this paper.) Let d be the number of edges on the perimeter of a toric diagram.

We label these d edges with µ, ν = 1, . . . , d in counter clockwise order. We also use the

label µ for the vertex between the edges µ and µ + 1. (Figure 1) The indices are defined

modulo d, and µ = d + 1 is identified with µ = 1.

The web diagrams are graphical dual to the toric diagrams. Each external leg in a

web diagram corresponds to an edge of the dual toric diagram, and we label the legs with

µ like the edges of the toric diagram. In general, web diagrams may have internal lines

and loops. In this paper we are interested only in the external legs, and web diagrams are

represented as sets of semi-infinite radial lines.

By taking T-duality transformation along specific two cycles, a toric Calabi-Yau ge-

ometry is transformed into an NS5-brane system, and D3-branes at the tip of the cone

are mapped to D5-branes wrapped on T2. Let xM (M = 0, . . . , 9) be the coordinates of

10-dimensional spacetime. The 4-dimensional gauge theory is defined in R4 along 0123.

The directions x5 and x7 are compactified and the T-duality is taken along these directions.

The four dimensional space along 4567 is topologically (C×)2. (Table 1)

The D5-brane world volume is R4 × T where T is the torus along 57 directions, and

the NS5-brane world volume is R4 × Σ, where Σ is a 2-dimensional surface in the 4567

space. Because any branes we consider here always spread along 0123, we mainly focus
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0 1 2 3 4 5 6 7 8 9

D5 ◦ ◦ ◦ ◦ ◦ ◦
NS5 ◦ ◦ ◦ ◦ Σ

Table 1: The brane configuration corresponding to brane tilings. 5 and 7 are compactified. Σ is a

two dimensional surface in the 4567 space.

only on the internal part of the worldvolumes, T and Σ, and call these two-dimensional

surfaces simply worldvolumes.

In the weak coupling limit, gstr → 0, in which the NS5-brane tension is much larger than

the D5-brane tension, the NS5-brane world volume Σ is a holomorphic curve in the (C×)2

described by the Newton polynomial associated with the toric diagram. The projection

of the surface to the non-compact 46-plane is called amoeba. It is easily shown that Σ

generically has d punctures, and they are represented as infinitely long thorns of amoeba.

The web diagram can be regarded as the “tropicalization” of the amoeba in which the

thorns becomes semi-infinite radial lines. These lines are semi-infinite cylinders of NS5-

branes, and the surface Σ can be constructed as the union of these d semi-infinite cylinders.

We refer to these cylinders as faces in Σ. They are topologically punctured disks, and are

labeled by µ = 1, . . . , d in the same way as the external legs in the web diagram.

In order to determine the real shapes of both the NS5 and D5 branes, we need to

solve the equations of motion of the branes (or BPS equations equivalent to them) and in

general it is not easy. In some cases, we are interested only in the topological1 structure

of branes. In such cases, instead of considering the real shape of branes, it is convenient

to consider another configuration obtained from the real shape by continuous deformation

which does not change the asymptotic shape of the system. In this paper we mainly use

configurations in which the D5-brane world volume T is the flat torus, and the intersection

T ∩ Σ is a bipartite graph ((a) in figure 4). A bipartite graph is a graph in which all the

vertices can be colored with two colors, say, black and white, in such a way that any two

vertices connected by an edge have different colors. The bipartite graph drawn on T is

called “brane tilings”.

Given a brane tiling, we can easily read off the information of the corresponding quiver

gauge theory. The faces in the tiling, each of which is a stack of N D5-brane disks, represent

the SU(N) factors in the gauge group. We use a, b, . . . for labeling the faces in the tiling,

and denote the gauge group associated with the face a by SU(Na). Edges correspond to

bi-fundamental chiral multiplets. Let I be the edge shared by two faces a and b. The

chiral multiplet ΦI corresponding to the edge belongs to a bi-fundamental representation

of SU(Na) × SU(Nb). This arises as massless modes of open strings stretched between

D5-branes on faces a and b [19]. These open strings graphically represented as an oriented

segment connecting faces a and b, and we denote the segment by sab. (Figure 2) These

segments are nothing but the arrows in the corresponding periodic quiver diagram, and

1In this paper, we use the term “topological” in the following sense: If two brane configurations are

topologically the same, we can continuously deform one to the other. In general, these two may have

different geometrical topology.
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Figure 2: The oriented segments (arrows) corresponding to the bi-fundamental fields

if the orientation is from b to a (from a to b), the chiral multiplet belongs to (Na,Nb)

((Na,Nb)).

The orientations of the segments are determined according to the colors of vertices.

We take clockwise orientation for arrows around a black vertex, and counter clockwise

orientation for arrows around a white vertex. Because of the bipartiteness of the graph

we can consistently and uniquely determine the orientation of the arrows by this rule. To

represent this orientation, we define the function sign(a, b) for a pair of faces a and b sharing

an edge in such a way that if the orientation is from b to a (from a to b) the function is

sign(a, b) = +1 (−1). In general, two faces may share more than one edge. In such a case,

we should define sign(a, b) for each edge separately. Although sign(a, b) depends not only

on a and b but also on the edges, we will not give it explicitly as argument.

The boundaries of faces on Σ are zig-zag paths in the bipartite graph on T. ((a) in

figure 4) A zig-zag path is a closed oriented path consisting of edges in a bipartite graph

drawn on an orientable surface which turns most left at black vertices and turns most right

at white vertices. Let µ represent the zig-zag path on T which is the boundary of a face µ

in Σ. The path µ belongs to a non-trivial homology class of T , and is identified with the

vector vµ − vµ−1, where vµ is the two-dimensional integral coordinate vector for the vertex

µ in the toric diagram. We can represent the faces in Σ, the semi-infinite cylinders of

NS5-branes, as the direct product of the zig-zag paths µ in the torus and the semi-infinite

radial lines Lφµ in the 46 plane, where φµ is the direction of the external line µ. (Figure 3)

The real shape of the worldvolumes of NS5-branes are of course smooth and their sections

are never zig-zag lines. We here, however, are interested in the topological structure, and

do not distinguish between them.

An edge in a tiling is always shared by two zig-zag paths in T . In this paper, we

assume that if a pair of two zig-zag paths have more than one intersection they intersect

in the same orientation at all the intersections. It follows this assumption that any zig-zag

path does not have self-intersections. This is necessary for the graph to give a consistent

quiver gauge theory [12]. The number of edges shared by two zig-zag paths µ and ν is

|〈µ,ν〉| where 〈µ,ν〉 is the intersection number of the two paths. If the cohomology classes

for the paths µ and ν are given as the linear combination of basis (α,β) by

µ = p1α + q1β, ν = p2α + q2β, (2.1)
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Figure 3: Each leg in the web diagram represents an NS5-brane. It is semi-infinite radial line Lφµ

in the non-compact 4689 space. In the internal space along 57, it is wrapped on the cycle µ.

the intersection number is given by

〈µ,ν〉 = p1q2 − p2q1. (2.2)

(We use µ and ν for two meanings, zig-zag paths and homology classes for the paths.)

Because every edge is shared by two zig-zag paths, the total number of the bi-fundamental

matter fields is given by

Nmatter =
1

2

∑

µ,ν

|〈µ,ν〉|. (2.3)

Similarly to the function sign(a, b), We define the signature function for a pair of two faces

µ and ν on Σ by sign(µ, ν) ≡ sign(〈µ,ν〉).
Because the bipartite graph is the intersection of T and Σ, we can also regard it as a

graph on Σ. This gives another set of zig-zag paths because the definition of zig-zag paths

depends on the choice of the orientable surface on which the graph is drawn. We can easily

see that zig-zag paths defined in Σ are boundaries of faces on T . Let a be the zig-zag path

on Σ corresponding to the boundary of face a.

Because Σ is an orientable surface as well as T , we can define Z-valued intersection

number for two zig-zag paths a and b. We denote it by 〈a, b〉. The signature sign(a, b) we

defined above for a pair of faces a and b on T is identical with sign(〈a, b〉).
For the zig-zag paths on T , the following relation holds:

∑

µ

µ = 0 (as a homology class of T ). (2.4)

This is because all the edges are shared by two zig-zag paths and these two paths have

opposite orientation on the edge. A similar relation holds for the zig-zag paths on Σ. The

zig-zag path on Σ satisfy

∑

a

a = 0 (as a homology class of Σ), (2.5)

where Σ is the closure of Σ. This is because the boundaries of adjacent faces have opposite

orientation along the shared edge.
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Figure 4: (a) Structure of branes around an edge. This is correct only topologically. (b) The real

shape of the brane configuration in the strong coupling limit.

We should emphasize that the structure of branes we describe above is correct only

in the topological sense. The real structure would be difficult to obtain in general. The

D5 and NS5 worldvolumes are deformed by the effect of the other branes, and become two

surfaces in (C×)2 sharing part of them. In some cases, however, we can easily determine

the shape of branes. One is the weak coupling limit we mentioned above. The opposite

limit is also interesting. In the strong coupling limit, in which the D5-brane tension is

much larger than the NS5-brane tension, the system consists of almost flat branes. It looks

like (b) in figure 4. In addition to the original faces of the bipartite graph, new faces are

formed around the vertices. The white and black vertices become polygons of (N, 1) and

(N,−1) fivebrane, respectively.

Because the edges in brane tilings are the intersection of the NS5-brane Σ and the

stack of N D5-branes T , each edge can be regarded as a 4-junction of 5-branes. (We here

treat a stack of N D5-branes as a single 5-brane with the D5-brane charge N .) The 5-brane

charges of four 5-branes meeting at the 4-junction are (0, 1), (0, 1), (N, 0) and (N, 0). This

can be generalized into more general junctions. For example, we can change the fivebrane

charges at a 4-junction to

(Na, 0), (Nb, 0), (pµ, 1), (pν , 1), (2.6)

where a and b are faces on T sharing an edge and µ and ν are faces in Σ sharing the

same edge. The D5-brane charges Na, Nb, pµ and pν must satisfy the charge conservation

condition

sign(a, b)(Na − Nb) + sign(µ, ν)(pµ − pν) = 0. (2.7)

By this generalization, the numbers of D5-branes depend on faces. This corresponds to

the introduction of fractional D3-branes in the dual Calabi-Yau cone. On the gauge theory

side, this gives gauge groups with different ranks.

The boundary condition (2.7) guarantees the D5-brane charge conservation at junc-

tions, and we can derive constraints imposed on Na and pµ. The D5 charge conservation

on T gives ∑

µ

pµµ = 0 (as a homology class of T ). (2.8)
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For a given set of µ, this imposes two independent conditions on the set of numbers pµ,

and the number of independent components in pµ is d − 2. This condition is useful when

we classify the fractional branes. Deformations of the complex structure of Calabi-Yau

manifold is known to be described by Altmann’s rule, and it corresponds to splittings of

NS5-brane system. If a set of integers pµ satisfies the condition (2.8) in each component of

the system, the corresponding fractional brane is called deformation fractional brane [16].

We also have the following constraint imposed on Na from the cancellation of D5-charge

flowing into Σ. ∑

a

Naa = 0 (as a homology class of Σ). (2.9)

A set of Na satisfying the relation (2.9) gives an anomaly-free rank distribution [17]. If

there are SU(2) factors in the gauge group, this guarantees the absence of the global

anomaly [18].

In the following sections, we restrict our attention to the conformal case with all ranks

the same.

3. Global symmetries

The global U(1) symmetries of N = 1 quiver gauge theories are classified in three classes

according to operators they non-trivially act on. A global symmetry rotating the super-

charge is called R-symmetry, and denoted by U(1)R. Global symmetries which do not act

on the supercharge are called flavor symmetries, and they are divided into two groups,

mesonic and baryonic symmetries.2

These global symmetries should be realized as gauge symmetries in string theory. The

purpose of this section is to identify the gauge symmetries corresponding to the global

symmetries in gauge theories. Because global symmetries are specified by charge assign-

ments to matter fields, we first discuss charged objects in the brane systems corresponding

to matter fields.

For later use we define some “delta functions”. δ(a) is the function in T which is 1 in

the face a, and vanishes in the other faces. δ(µ) is the function in Σ similarly defined. δ(I)

is the one-form delta function on T supported by the edge I. The signature is chosen so

that
∫
sab

δ(I) = 1 where a and b are the two faces sharing I and sab is the oriented segment

defined in § 2. δ(µ) is the closed 1-form delta function on T with support on µ. The

integral of δ(µ) along a path C gives the intersection of C and µ. The following relation

holds: ∫

T
δ(µ) ∧ δ(ν) =

∫

µ

δ(ν) = 〈µ,ν〉. (3.1)

δ(a) is the closed 1-form delta function on Σ with support on a zig-zag path a. This also

satisfies the similar relation to (3.1).

2Flavor symmetries often mean what are referred to as mesonic symmetries in this paper. We here use

this term to represent baryonic and mesonic symmetries.
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3.1 Strings and chiral operators

Let QI be a charge assignment of a flavor symmetry to fields ΦI . We define the one-form

Q on the torus T by

Q ≡
∑

I

QIδ(I). (3.2)

Each term in the superpotential corresponds to the vertices in the tiling. The term cor-

responding to a vertex is trace of product of bi-fundamental field associated with edges

around the vertex. For the superpotential to be invariant under the symmetry specified

by the charge assignment, the sum of charges for edges sharing one vertex must vanish.

Therefore, we need to require the one form satisfy

dQ = 0. (3.3)

There are two kinds of gauge invariant chiral operators made of bi-fundamental chiral

multiplets. Operators in one kind are called mesonic operators. These are the trace of

the products of bi-fundamental fields. Each mesonic operator can naturally be associated

with the closed path made of the oriented segments corresponding to the constituent bi-

fundamental fields. Because each segment represents open string, it is possible to regard

the closed paths as closed strings. Even though the process in which open strings merge

into an closed string is suppressed in the decoupling limit, the identification of closed strings

and mesonic operators is convenient because the closed strings carry the same charge with

the mesonic operators.

Let PO be the closed path corresponding to a mesonic operator O. The U(1) charge of

the operator O can be obtained as the contour integral of the one-form Q along the path

PO corresponding to the operator:

Q(O) =

∮

PO

Q. (3.4)

Because of the condition (3.3), the charge of mesonic operator depends only on the homol-

ogy class of the corresponding contour. This means that if two one-forms Q for two flavor

symmetries belong to the same cohomology class we cannot distinguish between them by

using couplings to mesonic operators. In order to distinguish between such two symmetries

we need to use baryonic operators.

The baryonic operators are operators constructed by using determinant with respect

to the color indices. We can identify the baryonic operator det ΦI with D-strings stretched

between two faces µ and ν on Σ sharing the edge I. One way to confirm this is to consider

the T-duality to the Calabi-Yau cone. In the context of AdS/CFT, baryonic operators are

identified with D3-branes wrapped on 3-cycles in Calabi-Yau [20]. Through the T-duality

transformation, the wrapped 3-branes are mapped to D-strings ending on NS5-branes.

Another way to confirm the relation between D-strings and the baryonic operators

is to show the existence of the process in which an open D-strings decays into N open

fundamental strings. Let us consider a D-string stretched between two faces on Σ separated

by the intersection with a stack of N D5-branes. ((a) in figure 5) In the figure, we deform

– 9 –
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Figure 5: Transition between one D-string and N F-strings. The pairs of small numbers are string

charges.

the four-junction of 5-branes into two three-junctions on which NS5, D5, and (N, 1) 5-brane

meet. Because only (N, 1)-strings can end on the (N, 1) 5-brane, if one move the endpoints

of the D-string to the middle part of horizontal line, which represents the (N, 1) 5-brane,

N fundamental strings are created at the both ends of the D-string by the Hanany-Witten

effect [21] so that the charge of the string endpoints on the horizontal line become (N, 1).

((b) in figure 5) After pair annihilation of the two end points on the (N, 1) fivebrane, we

are left with N fundamental strings stretched between two D5-branes. ((c) in figure 5)

The existence of this process means that the D-string is a bound state of N fundamental

strings.

As we mentioned above, the flavor symmetries are divided in two classes. If the one-

form Q for a symmetry is in the trivial cohomology class, mesonic operators are neutral

with respect to this symmetry and the symmetry is called baryonic symmetry. Otherwise,

the symmetry is called mesonic symmetry.

3.2 Baryonic symmetries

There is a simple way to obtain charge assignment of anomaly free flavor symmetries with

the help of the toric diagram [15]. The prescription is as follows:

• Associate numbers aµ satisfying
d∑

µ=1

aµ = 0 (3.5)

to the vertices on the perimeter of the toric diagram.

• The U(1) charge QI of the chiral multiplet associated with the edge I is given by

QI = sign(µ, ν)

µ−1∑

ρ=ν

aρ, (3.6)

where µ and ν are zig-zag path sharing the edge I. The indices ρ runs from ν to

µ − 1 in the counter-clockwise direction on the perimeter of the toric diagram.

As is pointed out in [16], it is convenient to define parameter bµ by

bµ+1 − bµ = Naµ. (3.7)

– 10 –
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(The normalization of the parameters bµ adopted here is different from that in [16] by the

factor N .) These parameters are associated with the external legs of the web diagram,

or equivalently edges of the toric diagram. Due to the condition (3.5) we can define bµ

satisfying this relation, and aµ given by (3.7) automatically satisfy the condition (3.5). In

terms of the parameters bµ, the charge QI is given by

QI =
1

N
sign(µ, ν)(bµ − bν). (3.8)

The above prescription can be used for both baryonic and mesonic symmetries. If we

want to obtain baryonic charge assignments, we should impose

d∑

µ=1

vµaµ = 0, (3.9)

on the parameters aµ in addition to (3.5), where vµ is the two dimensional coordinate

vector for the vertex µ in the toric diagram. Using µ = vµ − vµ−1, the condition (3.9) is

rewritten as ∑

µ

bµµ = 0. (3.10)

These rules for obtaining mesonic and baryonic symmetries are naturally reproduced by

identifying the corresponding gauge fields in the brane configuration.

Let us first discuss baryonic symmetries in this subsection. This kind of symmetries

do not couple to mesonic operators, and the contour integral (3.4) vanishes. This means

that the one-form Q is exact, and belongs to the trivial cohomology class. Due to this, the

1-form can be given as

Q = dS (3.11)

with a function S on the tiling defined by

S =
∑

a

Saδ(a) (3.12)

with some number assignment Sa to faces. The relation (3.11) are equivalent to the relation

QI = sign(a, b)(Sa − Sb). (3.13)

The baryonic symmetries with charge assignment QI given by (3.13) can be realized with

the gauge field V̂ D5 on the D5-branes given by

V̂ D5 = SV 1N (3.14)

where 1N is the N × N unit matrix for the color indices. We use hats to emphasize that

fields are N × N matrices. The end points of open strings on face a couples to the non-

dynamical gauge field V with the charge ±Sa, and the charge of open string stretched on

sab is given by (3.13).
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Figure 6: (a) N D5-branes T and NS5-brane Σ intersecting on edge I. (b) N D5-branes T and

NS5-brane Σ sharing strips around edge I.

We can regard edges as four-junctions of fivebranes and the boundary condition im-

posed on gauge fields on the four fivebranes is3

sign(a, b) tr(V̂ D5
a − V̂ D5

b ) + sign(µ, ν)(V NS5
µ − V NS5

ν ) = 0. (3.15)

V̂ D5
a is the restriction of V̂ D5 to the face a. V NS5

µ is similarly defined as the restriction of

V NS5 to the face µ. In order to satisfy this condition, we need non-vanishing V NS5. Let us

introduce the following gauge field on the NS5-brane depending on the U(1)B gauge field

V :

V NS5 =
∑

µ

BV, (3.16)

where B is the function on the NS5-brane worldvolume defined by

B = bµδ(µ). (3.17)

The boundary condition (3.15) requires the coefficients bµ satisfy (3.8). Namely, combining

two equations (3.8) and (3.13), we can show that the boundary condition (3.15) is satisfied.

This boundary condition can also be explained by the cancellation of divergence of field

strength on the D5-branes and NS5-brane. The field strengths for the potentials (3.14)

and (3.16) are

F̂D5 = SdV 1N + Q∧ V 1N . (3.18)

FNS5 = BdV + dB ∧ V (3.19)

(Now we assume the vanishing B2 and C2.) These field strengths have the terms which

include V without derivative, and they induce a mass for the four-dimensional gauge field

V . Fortunately, even though F̂D5 and FNS5 live on different branes, the unwanted terms

in these field strengths cancel each other when the relations (3.8) and (3.13) hold. To show

this, let us deform the 4-junction along the edge I to two 3-junctions connected by (N, 1)

fivebrane. (Figure 6) We can regard this (N, 1) fivebrane as a superposition of NS5-brane

and N D5-branes, and the field strength F (N,1) on the (N, 1) fivebrane is the sum of tr F̂D5

3This boundary condition is obtained from the condition for three-junctions discussed in appendix A.

– 12 –



J
H
E
P
1
2
(
2
0
0
6
)
0
4
1

and FNS5. Because the unwanted term in the field strengths have support in the (N, 1)

fivebrane, they are canceled if the relations (3.8) and (3.13) hold.

The gauge field (3.16) on the NS5-brane couples to D-strings ending on the NS5-brane.

As we mentioned above, the baryonic operator detΦI corresponds to the D-string stretched

between faces µ and ν on the NS5-brane sharing the edge I. The relation (3.8) guarantees

that the charge of the baryonic operator is N times the charge of ΦI .

The gauge field on NS5-brane also plays another important role. If it were absent,

the gauge field V would live only in the compact manifold (D5-brane world volume), and

it would become dynamical field with the coupling constant of the same order as the

gauge coupling constant of SU(N) gauge groups. Due to the gauge fields on NS5-brane,

the non-compactness of the NS5-brane worldvolume provides the infinitely large volume

factor in the kinetic term of the gauge field V , and it becomes non-dynamical gauge field

corresponding to a global symmetry.

Now we can interpret the prescription for obtaining baryonic charge assignments.

The parameters introduced in (3.7) are regarded as the parameters in the relation (3.16),

and (3.8) is physically interpreted as the boundary condition imposed on the gauge field on

the NS5-brane. We can also derive the constraint (3.10) by combining two equations (3.8)

and (3.13). Because the zig-zag path µ is the boundary of the face µ on the NS5-brane,

the relation (3.8) implies that the one-form Q is given by

Q =
∑

µ

bµδ(µ). (3.20)

As (3.13) shows, Q is exact on T and belongs to the trivial cohomology class. This is

equivalent to the relation (3.10).

3.3 θ angles and U(1)B SU(Na)
2 anomalies

The charge assignments we discussed above give anomaly free U(1)B symmetries. The

existence of the U(1) SU(Na)
2 anomaly for a U(1) symmetry implies that the SU(Na)

θ-angle is shifted by the U(1) rotations. In this subsection, we identify parameters in

the fivebrane system which correspond to the θ angles, and the relations (3.8) and (3.13)

guarantee the invariance of the parameters under the U(1) rotations.

Let δ4(a) be the four-form δ function in ten-dimensional spacetime supported on the

worldvolume of the D5-branes on the face a, whose boundary is the cycle a on the NS5-

brane Σ. If the U(N) gauge field V̂ D5
a on the D5-branes does not vanish, D3-current

(1/2π)δ4(a) ∧ tr F̂D5
a and D1-current (1/8π2)δ4(a) ∧ tr(F̂D5

a ∧ F̂D5
a ) are carried by the D5-

branes in addition to the D5-current Nδ4(a). The D1-current on the D5-branes on the face

a electrically couples to the U(1) gauge field V NS5 on the NS5-brane Σ:

S =
1

8π2

∫

R4×a

V NS5 ∧ tr(F̂D5
a ∧ F̂D5

a ) (3.21)

This implies that the θ-angle for the SU(Na) gauge group is given by

θa =

∮

a

V NS5. (3.22)
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(There is also the RR 2-form potential contribution to the θ-angles, which is omitted here.)

On the other hand, the magnetic coupling of V NS5 to the D3-current is represented by the

Bianchi identity

dFNS5 +
∑

b

δ(b) ∧ tr F̂D5
b = 0. (3.23)

This implies that the field strength FNS5 is given by

FNS5 = dV NS5 −
∑

b

δ(b) tr V̂ D5
a , (3.24)

and the gauge invariance of this field strength requires the gauge field V NS5 be transformed

by the gauge transformation δV D5 = dλ̂D5 as

δV NS5 =
∑

b

δ(b) tr λ̂D5
b . (3.25)

If the baryonic symmetry is realized as gauge symmetry on D5-branes by the embed-

ding (3.14), the transformation parameters λ̂b in (3.25) is related to the parameter λ for

the baryonic symmetry by

λ̂D5
a = 1NSaλ, (3.26)

and this gauge transformation changes the θ-angle (3.22) by

δθa =
∑

b

∮

a

δ(b) tr λ̂(D5)
a = N

〈
a,

∑

b

Sbb

〉
λ. (3.27)

We can show that this anomaly cancels if the relations (3.8) and (3.13) are satisfied.

From the relations (3.8) and (3.13) we can show that the 1-chain
∑

b Sbb on Σ can be

represented as the boundaries of the faces on the Σ. Therefore, this is homologically

trivial: ∑

a

Saa =
∑

µ

bµ∂µ = 0. on Σ. (3.28)

The relation (3.28) guarantees the cancellation of the anomaly (3.27).

3.4 Mesonic symmetries

As we mentioned in §§ 3.1, we can associate gauge invariant mesonic operators to closed

strings. Thus mesonic symmetries coupling to some of them should be realized with the

NS-NS 2-form field, B. For a charge assignment QI , we can give the gauge field V coupling

to the bi-fundamental field with charge QI as

B = Q ∧ V + fdV (3.29)

where f is a function on T such that Q − df is a smooth function. The second term is

introduced to avoid the divergence of the energy induced by the field strength H3 = dB.

We need to solve equations of motion to determine the function f . We, however, do not

need the precise form of f .
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With the existence of the D5-branes wrapped on T , the above B field appear in the

D5-brane action through the field strength F̂D5 = dV̂ D5+B1N , and the first term in (3.29)

induce the mass term for the gauge field V through the field strength. This problem can

be avoided by introducing the gauge field on the NS5-brane just in the same way as the

baryonic case. We again introduce the gauge field (3.16) on the NS5-brane, and require the

cancellation between unwanted terms in F̂D5 and FNS5. This cancellation is realized if the

relation (3.8) is satisfied. The difference from the baryonic case is that the closed one-form

Q does not have to be exact and the condition (3.13) is not imposed. This fact corresponds

to the fact that the condition (3.10) is not imposed on the parameters bµ when we determine

mesonic charge assignments by following the prescription we mentioned above.

If Q is exact and given by (3.11), it gives a baryonic charge assignments. We can use

the above realization with the B field in this case, too. Thus, we have two ways to realize

the baryonic symmetries. These two are actually gauge equivalent through B-field gauge

transformation. For an exact Q, we can adopt the function f = S in (3.29), and the B-field

is given by

B = Q∧ V + SdV = d(SV ) (3.30)

This choice of the function f minimizes the energy of the NS-NS field H in the bulk. If we

perform the B-field gauge transformation

δB = dΛ, δV̂ D5 = −Λ1N (3.31)

with the parameter Λ = −SV , the B field becomes zero. Instead, the gauge field on

D5-branes becomes non-vanishing and given by (3.14).

We always have the ambiguity associated with this equivalence when we realize a given

symmetry as gauge symmetry in the brane configuration. This can be identified with the

mixing ambiguity between the mesonic symmetries and baryonic symmetries.

3.5 R-symmetry

The prescription for obtaining R-charge assignment RI is similar to the prescription for

flavor symmetries [15]. Instead of the parameters satisfying (3.5), we associate with vertices

in the toric diagram the parameters aµ satisfying

d∑

µ=1

aµ = 2. (3.32)

For a set of parameters aµ satisfying (3.32), the R-charge of ΦI is given by

RI =

µ−1∑

ρ=ν

aρ for sign(µ, ν) > 0, RI =
ν−1∑

ρ=µ

aρ for sign(µ, ν) < 0, (3.33)

where µ and ν are the two zig-zag paths sharing the edge I.

As in the case of baryonic and mesonic symmetries, it is convenient to associated with

the edges of the toric diagram the parameters φµ which give aµ as the differences among

them. However, the relation (3.32) implies that φµ cannot be single-valued parameters.
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Thus we define them as angular parameters defined modulo 2π. The relation between aµ

and φµ is

φµ − φµ−1 = πaµ mod2π. (3.34)

The equations in (3.33) for R-charges are rewritten as

πRI = sign(µ, ν)(φµ − φν) mod 2π, (3.35)

where µ and ν are the two zig-zag paths sharing the edge I.

In order to fix the 2π ambiguity, we need to carefully define the difference of two angles.

For this purpose, we assume that all the R-charges of bi-fundamental fields satisfy

0 ≤ RI ≤ 1. (3.36)

We restrict our attention to R-symmetry satisfying this condition. Note that it is known

that RI ≤ 1 is always satisfied for the R-charges determined by the a-maximization [5].

We, however, do not claim that the R-symmetry we discuss here is the R-symmetry in the

superconformal algebra.

If we assume that the condition −1 ≤ RI ≤ 1, which is looser than (3.36), is satisfied,

we can fix the mod 2π ambiguity by

RI =
1

π
sign(µ, ν)[[φµ − φν ]], (3.37)

where [[x]] is defined by

[[x]] ≡ xmod 2π, −π ≤ [[x]] ≤ π. (3.38)

The positivity of the R-charge in (3.37) requires φµ satisfy

sign(µ, ν)[[φµ − φµ−1]] ≥ 0. (3.39)

With this inequality, we can show that the cyclic order of φµ is the same with the order of

the external legs of web diagram (if we define the order of degenerate angles appropriately).

R-charges satisfying (3.36) can be described by an isoradial embedding of the bipartite

graph [12]. In such embeddings, each edge in the tiling is represented as a diagonal of

rhombus. A zig-zag path µ is represented as rhombi path and we can identify the angle φµ

to the direction of the sides of rhombi inside the rhombi path. In such rhombus lattice, the

R-charges are represented as internal angles of the rhombi [12], and are given by (3.37).

Because angles φµ are associated with the external legs of a web diagram, and the

cyclic order of φµ is the same with that of the external legs under the assumption (3.36), it

is natural to interpret the parameters φµ as the direction of external lines of web diagrams

on the 46-plane. In order to confirm this speculation, let us compute R-charges of charged

objects in the brane configuration.

Let VR be the gauge field for the R-symmetry. We compute the coupling of VR to

D-strings stretched between two faces on Σ, which correspond to the baryons.
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We should first identify the gauge field VR. Because the R-symmetry is the 89-rotation

of the system in the brane realization, the gauge field VR enters in the metric as

ds2 = ds2
6 + dr2 + r2dθ2 + r2 cos2 θdφ2 + r2 cos2 θ(dψ + 2VR)2 (3.40)

when VR is pure gauge. ds2
6 is the flat metric for 012357 directions. For the codimensions

4689 of the D5-branes, we introduce the polar coordinates by

x4 + ix6 = reiφ cos θ, x8 + ix9 = reiψ sin θ. (3.41)

We here normalize the gauge field VR so that x8 + ix9 has charge 2. This means that the

R charge of supercharge, which has spin J89 = 1/2 on the 89 plane, is 1. If FR ≡ dVR 6= 0,

the metric should be modified by the corresponding curvature. However, we do not need

the FR correction because the R-charge is determined only by the minimal coupling of VR

to charged objects.

Let us consider the RR 3-form flux induced by the N D5-branes wrapped on T , the

torus along x5 and x7. (See table 1.) If VR = 0 the flux is given by

G3 =
N

π
sin θ cos θdθ ∧ dφ ∧ dψ. (3.42)

The gauging of the 89-rotation can be taken into account by the replacement

dψ → dψ + 2VR. (3.43)

By this replacement we obtain the VR dependence of the flux G3 as

VR dependent part of G3 =
2N

π
sin θ cos θdθ ∧ dφ ∧ VR. (3.44)

The corresponding 2-form potential is

VR dependent part of C2 =
N

π
cos2 θdφ ∧ VR. (3.45)

(We assumed the gauge field VR varies slowly and we neglect the dVR term.) We chose the

gauge such that the U(1)R isometry is manifest and the potential is non-singular except at

the origin of the 4689 space.

The coupling of VR to a baryon are obtained by integrating this potential along the

worldvolume of the D-string corresponding to the baryon. If I is an edge shared by two zig-

zag paths µ and ν, the D-string corresponding to the baryon det ΦI is stretched between

external legs µ and ν. If we assume that (the time slice of) the worldvolume of the D-string

is a curve on the 46-plane connecting the legs µ and ν, the coupling of this RR field to

D-string is given by

S =
N

π
sign(µ, ν)[[φµ − φν ]]

∫
VR. (3.46)

We assumed that the D1 worldvolume is a curve on the 46-plane with smallest |
∫

dφ|, and

it does not make a detour around the origin. The orientation of the D1-brane is chosen
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so that it gives the correct orientation of open fundamental strings through the process in

figure 5. The coupling (3.46) shows that the R-charge for ΦI is given by (3.37).

We should note that the argument above is not a proof of (3.37) but a heuristic

explanation which seems to support the relation (3.37). Indeed, we cannot obtain different

R-charges of component fields in a supermultiplet in such a classical analysis. For rigorous

proof of the relation (3.37) we should quantize open strings.

Another circumstantial evidence for the relation (3.37) is the fact that as we demon-

strate below we can obtain U(1)R U(1)2B ’t Hooft anomalies which is consistent with the

charge assignment (3.37) by using the classical brane action.

4. ’t Hooft anomalies

In this section, we discuss how some ’t Hooft anomalies are reproduced by using the classical

action of the brane system.

The global symmetries of gauge theories are realized as gauge symmetries in string

theory as we discussed above. The anomalies associated with the symmetries must locally

cancel for the consistency of the theory. This is achieved by so-called anomaly inflow

mechanism [22 – 24].

An anomaly localized in a sub-manifold of the spacetime (branes, intersection of branes

etc.) causes violation of the conservation law for the current on the sub-manifold. If we

assume that the total theory is anomaly-free, this violation must be compensated by an

inflow of the current from the ambient to the sub-manifold. Using this fact, we can compute

anomalies in a sub-manifold as inflows of the currents through the boundary of the system.

Let us see how this mechanism works in a simple example [25]. We consider an inter-

secting D-brane system consisting of a D5-brane (D5A) along 012345 and another D5-brane

(D5B) along 016789 in type IIB theory. We here consider the anomaly associated with the

U(1) gauge symmetry on D5A, and assume that the gauge field on D5B vanishes for sim-

plicity. There is a Weyl fermion living on the intersection and it couples to the gauge field

on D5A. The anomaly arising in the intersection I is

δΓ =
1

4π

∫

I
λF (4.1)

for the gauge transformation δV = dλ, where F = dV is the field strength on D5A. This

anomaly at the intersection is locally canceled by the variation of the Chern-Simons term

of D5A

SCS =
1

8π2

∫

D5A

G3 ∧ V ∧ F. (4.2)

The variation of this action is

δSCS =
1

8π2

∫

D5A

dG3 ∧ Fλ +
1

8π2

∮

∂D5A

G3 ∧ Fλ, (4.3)

where the second term is the boundary term arises when we take the integral by part.

Because G3 magnetically couples to D5B and dG3 = 2πδ4(D5B), the first term cancels

the anomaly at the intersection. Instead, the anomaly appears in the second term as the
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boundary term. By using this, it is possible to compute the anomaly as the boundary term

without using knowledge of the intersection on which the anomaly arises.

In the rest of this section, we discuss three classes of ’t Hooft anomalies. It is not clear

if all the ’t Hooft anomalies can be obtained as the boundary term of the variations of

the brane action because there is possibility that anomalies are canceled by variations of

the bulk action of supergravity. In the following we simply assume that the anomalies are

locally canceled by boundary terms of variations of the brane action, and we show that the

correct anomalies are obtained for tr(U(1)M U(1)2B) and tr(U(1)R U(1)2B). (It will turn out

that we need to take account of bulk action to obtain a gauge independent result.)

4.1 U(1)3B

We first consider the tr U(1)3B anomalies. It is known that these anomalies always van-

ish. [15]

Let bi
µ (i = 1, 2, 3) be three sets of parameters which give three U(1)B charge assign-

ments Bi
I by the relation (3.8). Namely, the parameters bi

µ satisfy

∑

µ

bi
µµ = 0, (4.4)

and the charges Bi
I are given by

Bi
I =

1

N
sign(µ, ν)(bi

µ − bi
ν). (4.5)

The coefficient of the tr U(1)3B anomaly is given by

tr(B1B2B3) ≡ N2
∑

I

B1
I B2

I B3
I . (4.6)

Using the expression (4.5) for the charges, this can be rewritten as

tr(B1B2B3) =
1

2N

∑

µ,ν

〈µ,ν〉(b1
µ − b1

ν)(b
2
µ − b2

ν)(b3
µ − b3

ν). (4.7)

We used the fact that we can replace the summation with respect to the indices I by the

summation over pairs of cycles (µ, ν) with multiplicities |〈µ,ν〉|:
∑

I

(· · ·) =
1

2N

∑

µ,ν

|〈µ,ν〉|(· · ·). (4.8)

When the summand (· · ·) is 1, this relation gives the formula (2.3). After expanding the

right hand side in (4.7), we have eight terms cubic with respect to bi
µ. It is easy to show that

all these eight terms vanish separately. For example, (1/2N)
∑

µ,ν〈µ,ν〉b1
µb2

µb3
µ vanishes due

to (2.4), and (1/2N)
∑

µ,ν〈µ,ν〉b1
µb2

µb3
ν also vanishes due to (4.4). As the result, we obtain

tr(B1B2B3) = 0. (4.9)

It is also easy to show tr Bi = 0.
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We use this fact for the purpose of fixing the ambiguity of regularizations in the gauge

theory and total derivative terms in the Lagrangian of branes. Namely, on the gauge

theory side, we choose regularization which does not break the U(1)B symmetries, and on

the string theory side we use the brane action which does not produce boundary terms

when gauge transformations on branes corresponding to U(1)B symmetries are carried out.

This is the case if the action includes the U(1) gauge fields on branes only through the

gauge invariant field strengths. For example, we use the following Chern-Simons term of

D-branes, which is manifestly gauge invariant:

SCS =

∫
C ∧ e(F−B)/2π . (4.10)

4.2 U(1)M U(1)2B

Let MI and Bi
I be a mesonic charge assignment and baryonic charge assignments, respec-

tively. The baryonic charges Bi
I are given by (4.5) with the parameters bi

µ constrained

by (4.4). The mesonic charges MI are given by

MI =
1

N
sign(µ, ν)(mµ − mν), (4.11)

where mµ are parameters without constraint.

Using the expression (4.5) and (4.11) for the charges and the relation (4.8) for the

multiplicity, we obtain the following anomaly coefficient for tr(U(1)M U(1)2B):

AMij ≡ tr(MBiBj)

≡ N2
∑

I

MIB
i
IB

j
I

=
1

2

∑

µ,ν

〈µ,ν〉(mµ − mν)(b
i
µ − bi

ν)(b
j
µ − bj

ν)

=
∑

µ,ν

mµ〈µ,ν〉bi
νbj

ν (4.12)

The existence of the non-vanishing coefficient AMij means that under a gauge trans-

formation

δVM = dλM , δV i
B = dλi

B , (4.13)

the effective action is not invariant. Let δΓ be the variation of the effective action under

the gauge transformation (4.13). It is important that δΓ depends on the regularization

of loop amplitudes. If we use a regularization in which the three vertices in the triangle

fermion loop are treated symmetrically, we obtain the following variation:

δΓ =
1

24π2
AMijλMdV i

B ∧ dV j
B +

1

12π2
AMijλ

i
BdVM ∧ dV j

B (4.14)

We may use other regularizations different by finite counter terms. For example, we can

add the following counter term.

Scounter = − 1

12π2
AMijVM ∧ V i

B ∧ dV j
B (4.15)
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In this case, we have the following anomaly for the gauge transformation (4.13)

δ(Γ + Scounter) =
1

8π2
AMijλMdV i

B ∧ dV j
B . (4.16)

This variation does not include the U(1)B gauge transformation parameters λi
B. As we

mentioned in the previous subsection, we here use the U(1)B invariant regularization. Thus

we should adopt (4.16) as the anomaly which we compare to the variation of the brane

action. This regularization corresponds to the action in which gauge fields on branes

appear only through the gauge invariant field strengths. We can of course use a different

regularization, and it corresponds to a different choice of boundary terms in the brane

action.

The NS5-brane action has the term

SNS5 =
1

8π2

∫

R4×Σ
B ∧ dV NS5 ∧ dV NS5. (4.17)

For the mesonic charge assignment (4.11), the corresponding gauge field VM enters in the

B-field as

B =
∑

MIδ(I) ∧ VM + fdVM =
∑

mνδ(ν) ∧ VM + fdVM . (4.18)

The second term in (4.18) is gauge invariant and only the first term contribute the boundary

term in the variation of the action. Under the U(1)M gauge transformation VM = dλM ,

the B-field (4.18) is transformed by

δB =
∑

ν

mνδ(ν) ∧ dλM . (4.19)

The action (4.17) is gauge invariant only up to the boundary term, and the transforma-

tion (4.19) produces the boundary term

δSNS5 =
1

8π2

∫

R4×∂Σ
λM

∑

ν

mνδ(ν) ∧ dV NS5 ∧ dV NS5. (4.20)

The NS5-brane has d boundaries labeled by µ, which are the µ cycles in the torus. There-

fore,

δSNS5 =
1

8π2

∫

R4

λM

∑

ν

∫

ν

(
∑

µ

mµδ(µ)

)
∧

(
∑

i

bi
νdV i

B

)
∧




∑

j

bj
νdV j

B




=
1

8π2

∫

R4

λM

∑

i,j

∑

µ,ν

mµ〈µ,ν〉bi
νbj

νdV i
B ∧ dV j

B . (4.21)

where we used (3.1). The final expression is the same with the anomaly (4.16).

4.3 U(1)R U(1)2B

On the gauge theory side, the anomaly coefficient for tr(U(1)R U(1)2B) is

ARij = tr(RBiBj) ≡ N2
∑

I

(RI − 1)Bi
IB

j
I . (4.22)
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SU(N)1 SU(N)2 U(1)1 U(1)2 U(1)R
A1,2 N N 1 −1 1/2

B1,2 N N −1 1 1/2

Table 2: The matter contents of the conifold theory.

The trace is taken over all the fermions in the theory, and the R-charge of the fermion in

the chiral multiplet ΦI is given by

RI − 1 = sign(µ, ν)
1

π
[[φµ − φν − π]]. (4.23)

Therefore, the anomaly coefficient is

ARij =
1

2π

∑

µ,ν

〈µ,ν〉[[φµ − φν − π]](bi
µ − bi

ν)(b
j
µ − bj

ν). (4.24)

The variation of the effective action computed with the U(1)B invariant regularization is

δΓ =
1

8π2

∑

i,j

ARij

∫

R4

λRF i
B ∧ F j

B

=
1

16π2

∑

µ,ν

〈µ,ν〉 1

π
[[φµ − φν − π]]

×
∫

R4

λR(FNS5
µ − FNS5

ν ) ∧ (FNS5
µ − FNS5

ν ). (4.25)

In (4.25) we rewrote the anomaly in terms of gauge fields on the NS5-branes.

4.3.1 The conifold theory

To illustrate how the anomaly (4.25) is reproduced in the brane system, we first analyze

the conifold theory as the simplest example. It is SU(N)2 gauge theory with four bi-

fundamental chiral multiplets A1, A2, B1 and B2. The tiling has two faces and the chiral

multiplets are coupled to the U(N)a = SU(N)a × U(1)a (a = 1, 2) gauge fields on the D5-

branes with charges given in table 2. Only one combination of U(1)1 and U(1)2 symmetries

couples to the matter fields, and it is the U(1)B symmetry of the conifold theory. The

U(1)R U(1)2B ’t Hooft anomaly is given by

δΓ = − N2

4π2

∫
λRFB ∧ FB , FB =

1

N
tr(F̂D5

1 − F̂D5
2 ). (4.26)

where F̂D5
1 and F̂D5

2 are the U(N) gauge fields on two faces, and FB is the field strength

of the U(1)B gauge field.

The gauge fields on the D5-branes are related to the gauge fields on the NS5-brane by

the boundary condition

FNS5
45 − FNS5

67 = tr(F̂D5
1 − F̂D5

2 ) = NFB , (4.27)
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U(1)45 U(1)67 U(1)R
Q 1 −1 0

Q̃ −1 1 0

Table 3: The charges of chiral multiplets arising at the intersection of two NS5-branes. The

U(1)R charges given in this table are charges for scalar components. The charges for the fermion

components are less than them by 1.

where FNS5
45 and FNS5

67 are the gauge fields on NS5-branes along 45 and 67 directions,

respectively. By this relation, the anomaly computed in the gauge theory can be rewritten

in the following N -independent form:

δΓ = − 1

4π2

∫
λR(FNS5

45 − FNS5
67 ) ∧ (FNS5

45 − FNS5
67 ). (4.28)

Before showing that the classical action of NS5-brane system actually reproduce this

anomaly, we give another interpretation of the anomaly using another gauge theory. Be-

cause (4.28) is independent of N , the system of the NS5-branes must have this anomaly

even when the D5-branes are absent. Without D5-branes, the system preserves N = 2

supersymmetry, and one hyper-multiplet arises from D-strings stretched between two NS5-

branes. We denote this hyper-multiplet as two chiral multiplets Q and Q̃. These multiplets

couple to the gauge fields on the NS5-branes with charges given in table 3. The ’t Hooft

anomaly for this gauge theory is precisely the same with the anomaly (4.28) for the conifold

theory.

Let us reproduce this anomaly as the gauge transformation of the classical NS5-brane

action. It is convenient to perform the S-duality transformation to make the NS5-brane

system to intersecting D5-branes. Although this is simply the field redefinition, and does

not change the physics at all, it makes equations below somewhat simpler.

We can treat RR-fields in a unified way by using the formal sum G ≡ G1 + G3 + G5 +

G7 + G9. The electric-magnetic duality relation is

G = ∗G ≡ − ∗ G9 + ∗G7 − ∗G5 + ∗G3 − ∗G1, (4.29)

where ∗ is the Hodge dual operator with the alternating signature depending on the rank

of fields. We assume G1 and G9 vanish. The relation between the field strength and the

RR potential is given by

G = eB2/2π ∧ d(e−B2/2π ∧ C), (4.30)

where C = C2 + C4 + C6 is the formal sum of the RR potential fields. The equations of

motion and Bianchi identities for the RR fields with the presence of D5-branes are packed

in one equation

dG =
1

2π
H3 ∧ G + 2πeB2/2π ∧ J, (4.31)

where J is the D-brane current carried by D5-branes

J = δ4 ∧ e−FD5/2π. (4.32)
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δ4 is the 4-form delta function supported by the D5-brane worldvolumes.

For simplicity, we here neglect the NS-NS 2-form field and the self-duality condition

for the RR field strengths because they do not play essential roles. We take them into

account when we discuss general case below.

In the brane system realizing the conifold theory we have two D5-branes; one is along

the 45 direction, and the other is along the 67 direction. Let us consider RR gauge fields

induced by the D5-brane along the 45 direction. We first assume the U(1)R gauge field

vanishes. In this case, the four-form δ4 representing the D5-brane worldvolume is

δ4(D545) = δ(x6)dx6 ∧ dx7 ∧ δ(x8)dx8 ∧ δ(x9)dx9. (4.33)

We assume that the compactification radius of x7 is sufficiently small and use the smeared

charge density. The equation (4.31) becomes

dG = 2πδ4 ∧ e−FD5
45 /2π. (4.34)

With the assumption of slow variation of FD5
45 , we can easily solve (4.34) with

G =
1

2
dx7 ∧ sin θdθ ∧ dψ ∧ e−FD5

45 /2π, (4.35)

where we define the following polar coordinates in the 689 space:

x6 = r cos θ, x8 + ix9 = r sin θeiψ. (4.36)

The corresponding RR potential is

C =
1

2
(cos θ + c)dx7 ∧ dψ ∧ e−FD5

45 /2π, (4.37)

where c is the integration constant which can be set arbitrarily.

Because the U(1)R symmetry is the rotation along the coordinate ψ, the introduction

of the non-vanishing U(1)R gauge field can be achieved by replacing dψ by dψ + 2VR. As

a result, we have the following RR potential:

C =
1

2
(cos θ + c)dx7 ∧ (dψ + 2VR) ∧ e−FD5

45 /2π. (4.38)

Let us consider the coupling of this RR-field induced by D545 with the other D5-brane

along 67 direction. The action describing the coupling is

SD5 =

∫

D567

C ∧ eFD5
67 /2π, (4.39)

where C is given by (4.38). By the U(1)R gauge transformation VR = dλR, this action

produces the boundary term

δSD5 =

∫

∂D5
λR(c + cos θ)dx7 ∧ e(FD5

67 −FD5
45 )/2π (4.40)
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The D5-brane is a cylinder and has two boundaries. Because these two have the opposite

orientations, the contribution of the integration constant c cancels, and we obtain

δSD5 =
1

4π2

∫

R4

λR(FD5
67 − FD5

45 ) ∧ (FD5
67 − FD5

45 ) (4.41)

This is precisely the same with the anomaly (4.28), which we obtained from the gauge

theory. (Because of the S-duality transformation we performed, FNS5
45 and FNS5

67 are replaced

by FD5
45 and FD5

67 , respectively.)

One may think that one should consider the gauge field induced by the D567 and its

coupling to D545. However, it gives the same anomaly and actually these two are one thing

obtained by two ways. Taking both of them is double counting. Thus we should not take

account of both of them.

4.3.2 General case

Let us consider general case. In order to simplify the problem, we take the weak coupling

limit in which we can neglect the back reaction of energy density of branes, and assume the

background spacetime is flat and the dilaton is constant near the boundary we compute

the anomaly flow. This assumption also allow us to treat the NS-NS gauge field H3 as the

background, because H3 decouples in the weak coupling limit gstr → 0 from the other fields

in the equation of motion d ∗ H3 = (gstr/2π)G3 ∧ G5. Because there are N NS5-branes

wrapped on T , the NS-NS gauge field strength and the corresponding potential are

H3 =
N

π
sin θ cos θdθ ∧ dφ ∧ dψ, B2 =

N

2π
cos2 θdφ ∧ dψ, (4.42)

where we define the following polar coordinates in the 4689 space.

x4 + ix6 = r cos θeiφ, x8 + ix9 = r sin θeiψ. (4.43)

The potential B2 is singular at θ = 0, and there exist Dirac string-like singularity

H3 − dB2 = N

∫ 2π

0
δ3(Lφ)dφ, (4.44)

where Lφ is the radial semi-infinite segment in the 46-plane specified by an angle φ (fig-

ure 3), and δ3(Lφ) is the 3-form delta function in the 4689 space supported by Lφ.

In order to solve the self-duality equation (4.29) and the equation of motion (4.31)

with the background (4.42), we take the following ansatz for G:

G = (1 + ∗)
(
Gmag − 2πeB2/2π ∧ X

)
, (4.45)

where X is a constant zero-form in 4689 space and Gmag is a two-form in 4689 space. These

can be forms in 012357 space, too. We assume that Gmag takes the form

Gmag = g ∧ dψ, (4.46)

with g being a one-form in 4689 space, and satisfies

d∗Gmag = 0. (4.47)

– 25 –



J
H
E
P
1
2
(
2
0
0
6
)
0
4
1

The field G given by (4.45) trivially satisfies the self-duality condition (4.29). Substituting

the ansatz (4.45) above into the equation of motion (4.31), we obtain

dGmag = 2πJ − (H3 − dB2) ∧ X. (4.48)

For a D5-brane configuration described by a web-diagram with d legs the D-brane

current J in (4.32) is given by

J =
∑

µ

e−FD5
µ /2π ∧ δ(µ) ∧ δ3(Lφµ). (4.49)

According to the argument in §§ 3.5, we assumed that the directions of the legs on the

46-plane agree with the angles φµ, which determine R-charges of the bi-fundamental fields.

Because Lφ has endpoint at origin in the 4689 space, we have

dδ3(Lφ) = δ4689 ≡ δ(x4)δ(x6)δ(x8)δ(x9)dx4 ∧ dx6 ∧ dx8 ∧ dx9. (4.50)

For the consistency, the exterior derivative of the right hand side in (4.48) must vanish

because the left hand side is closed. From this condition, we obtain

dJ = NX ∧ δ4689. (4.51)

and X is determined as

X =
1

8π2N

∑

µ

δ(µ) ∧ FD5
µ ∧ FD5

µ . (4.52)

(This can be defined only when N > 0. If N = 0, J is conserved by itself and we can set

X = 0.)

The equation of motion (4.31) reduces to the following equation for Gmag:

dGmag =

∫ 2π

0
dφρ(φ) ∧ δ3(Lφ) (4.53)

where ρ(φ) is the formal sum of the forms in the 012357 space defined by

ρ(φ) = 2π
∑

µ

δ(φ − φµ)e−FD5
µ /2π ∧ δ(µ) − X (4.54)

Now we need to find the solution Gmag to the equations (4.47) and (4.53) in the form (4.46).

Because we assume F is slowly varying along 0123 and ρ(φ) is approximately constant

in the 0123 space, solving (4.47) and (4.53) is essentially the problem determining the

electro-magnetic field in the four-dimensional space coupling to a conserved current. This

problem is solved in appendix B, and the result is

Gmag =
1

2π
df ∧ dψ (4.55)

where f is the function in 4689 space determined by solving the differential equation given

in appendix B. The function f satisfies the boundary condition

f |θ=0 = m, (4.56)
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where the function m is defined by

dm(x4, x6) ∧ δ(x8)dx8 ∧ δ(x9)dx9 =

∫ 2π

0
dφρ(φ) ∧ δ3(Lφ), (4.57)

and the solution to this differential equation is

m(x4, x6) =
∑

ν

[[φ − φν − π]]δ(ν) ∧ e−FD5
ν + c, (4.58)

where c is a integration constant, which is one-form in T and a formal sum of 0, 2, and

4-forms in 4689 space. We here assume c = 0, and we comment on the c independence of

the result at the end of this section.

For the purpose of obtaining anomaly flow, we need to compute the coupling of RR

potential and the D5-branes. As we saw in the simplest example of the conifold case, only

the part of the RR potential which is written as Fdψ with a zero-form F in 4689 space

contributes to the anomaly. If Cmag denotes this part, we can easily show that Gmag given

in (4.55) and Cmag are related by

Gmag = dCmag (4.59)

and we can easily determine the potential Cmag on the 46-plane as

Cmag|θ=0 =
1

2π
m(x4, x6)dψ =

1

2π

∑

ν

[[φ − φν − π]]δ(ν) ∧ dψ ∧ e−FD5
ν . (4.60)

If we turn on the U(1)R gauge field, dψ is replaced by dψ + 2VR, and the U(1)R gauge

transformation changes it by 2dλR. Therefore, the U(1)R gauge transformation of (4.60)

is

δCmag|θ=0 = dλR ∧
∑

ν

1

π
[[φ − φν − π]]δ(ν) ∧ e−FD5

ν /2π. (4.61)

The anomaly flow associated with this gauge transformation is

δSD5 =
1

2

∑

µ

∫

∂D5
δC|µ ∧ eFD5

µ /2π

=
1

16π2

∑

µ,ν

1

π
[[φµ − φν − π]]〈µ,ν〉

∫
λR(FD5

µ − FD5
ν ) ∧ (FD5

µ − FD5
ν ) (4.62)

This coincides the same with the anomaly computed in the gauge theory.

Up to now we have assumed that the integration constant c in (4.58) vanishes. Before

ending this section, let us discuss the c independence of the anomaly flow. The extra

term arising in the gauge transformation of the RR potential due to the non-vanishing

integration constant c is

δC =
1

π
dλR ∧ c. (4.63)

– 27 –



J
H
E
P
1
2
(
2
0
0
6
)
0
4
1

With this gauge transformation, we obtain the following extra contribution to the anomaly

flow:

δSD5 =
1

2π

∑

µ

∫

∂D5
λRc ∧ eFD5

µ /2π

=
1

16π3

∑

µ

∫

R4×T
λRc1 ∧ δ(µ) ∧ FD5

µ ∧ FD5
µ

=
N

2π

∫

R4×T
λRc1 ∧ X. (4.64)

Between the first and second lines in (4.64) we used

∑

µ

δ(µ) =
∑

µ

δ(µ) ∧ FD5
µ = 0. (4.65)

Due to this relation (4.64) includes only the one-form part c1 of the formal sum c ≡
c1 + c3 + c5.

The c1 dependent contribution (4.64) is canceled by taking account of the gauge trans-

formation of the bulk action4

Sbulk =
1

8π2

∫
C2 ∧ H3 ∧ G5. (4.66)

Indeed, if we perform c1 dependent part of the U(1)R gauge transformation

δC2 =
1

π
dλR ∧ c1 (4.67)

and substitute the term

G5 = −2πX, (4.68)

we obtain

δSbulk = − 1

4π2

∫

R4×T×B4

dλR ∧ c1 ∧ H3 ∧ X

= − 1

4π2

∫

R4×T×S3

λRc1 ∧ H3 ∧ X. (4.69)

In the first line of (4.69), the integration region is the direct product of R4 along 0123, T ,

and four dimensional solid ball in 4689 space. To obtain the second line we used Stokes’

theorem and S3 in the integration region is the boundary of B4. By using
∮
S3 H3 = 2πN

we obtain

δSbulk = − N

2π

∫

R4×T
λRc1 ∧ X. (4.70)

This precisely cancels the c dependent term (4.64).

4The coefficient of this Chern-Simons term is half of the coefficient of the Chern-Simons term used for

the purpose of obtaining the equations of motion for the gauge fields. This is because we are computing a

kind of “self-energy” of the system. This may be related to the subtlety associated with the self-dual field

we often meet when we consider the action of type IIB supergravity.
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5. Conclusions and discussions

In this paper we studied the brane realization of global symmetries and ’t Hooft anomalies

associated with them.

We showed that U(1)B symmetries can be realized as linear combinations of the U(1)

gauge symmetries on the fivebranes, while the U(1)M symmetries are combinations of gauge

symmetry of the NS-NS 2-form field in the bulk and the U(1) gauge symmetries on the

NS5-branes. The mixing ambiguity for U(1)M can be interpreted as the gauge ambiguity

associated with the B-field gauge transformation.

We identified U(1)R symmetry with the rotation of the system on the 8-9 plane.

With this identification, it seems that there is a preferred R-charge assignment of the

bi-fundamental fields. Namely, the angles among external legs seems to determine the R-

charges uniquely. It is not clear how we should interpret this specific U(1)R symmetries on

the gauge theory side. One possibility is that it may be related to the U(1)R symmetry in

the superconformal algebra. We cannot, however, simply identify these two. One reason is

as follows. The charges for superconformal U(1)R is determined with the help of so-called

a-maximization procedure, and the charges obtained by this procedure are always quadratic

rational numbers. Namely, they are represented as a + b
√

m with rationals a and b and an

integer m. On the other hand, in §§ 3.5, R-charges are given as angles among external legs

in web diagrams. It is unlikely that these two sets of quantities, a set of quadratic rationals

and a set of angles, coincide. Another reason is that the angles among the external legs

depend on the modulus of the torus along 57 directions, while the a-maximizing R-charge

assignment does not seem to have such a degree of freedom. We may be able to understand

the disagreement between the two sets of R-charges as follows. In this paper we only used

the asymptotic shape of the branes to determine the charges. This seems to give only the

information of ultra-violet region. On the other hand, the a-maximizing symmetry is in

general realized only in the infra-red limit. Thus, it is natural that the two sets of charges

are different. In order to investigate low-energy dynamics of gauge theories, including the

charges of operators for the superconformal R-symmetry, it would be important to know

the precise shape of the brane in the central region of the brane configuration.

In § 4, we showed that two kinds of non-vanishing ’t Hooft anomalies, U(1)M U(1)2B
and U(1)R U(1)2B anomalies, are obtained as the variations of the classical action of the

branes. Natural question arises here is that how we can get other anomalies. Especially,

U(1)3R and U(1)R, which are used in the a-maximization, are very important if we discuss

low-energy dynamics of gauge theories. Because R-symmetry is identified with the spacial

rotation of the brane system, the corresponding gauge field enters in the metric and the spin

connection. Therefore, in order to obtain U(1)3R and U(1)R anomalies, we need to consider

the brane configuration in curved backgrounds, and take account of the higher derivative

terms including the curvature of the background spacetime. This (and the problem about

R-charges we mentioned above) makes the analysis more difficult than what we have done

in this paper.
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A. The action of (p, q) fivebrane junctions

In this appendix, we determine the boundary condition imposed on gauge fields on five-

branes at junctions by requiring the gauge invariance of the action. We first fix our con-

ventions.

In this appendix, we use different normalization for gauge fields and actions. Any

gauge field A (a gauge field on a brane or a bulk gauge field) in this appendix is related to

the field A′ in the other sections by rescaling A = A′/(2π). An action S in this appendix is

similarly rescaled by S = S′/(2π) where S′ is the action in the usual normalization. This

rescaling removes 2π from the following equations.

The electric-magnetic duality relations for the RR field strengths and the NS-NS field

strengths in type IIB supergravity are

G5 = − ∗ G5, G7 = ∗G3, G9 = − ∗ G1, H7 = −e−2φ ∗ H3. (A.1)

The first one represents the (anti-)self-duality of the RR 5-form field strength.

Let G = G1 +G3 +G5 +G7 +G9 be the formal sum of RR field strengths. The Bianchi

identities and equations of motion in the string frame are

dG = H3 ∧ G (A.2)

dH3 = 0. (A.3)

dH7 = G3 ∧ G5 − G1 ∧ G7 (A.4)

We define the NS-NS potential B2 by

H3 = dB2. (A.5)

The RR potentials are defined by

G = dC − H3 ∧ C = eB2 ∧ d(e−B2 ∧ C), (A.6)

where C is the formal sum C = C0 + C2 + C4 + C6 + C8.

The field strengths G and H3 above are invariant under the B-field gauge transforma-

tions

δB2 = dΛB
1 , (A.7)
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and the RR gauge transformations

δC = eB2 ∧ dΛC , (A.8)

where ΛC is the formal sum of the parameters ΛC = ΛC
1 +ΛC

3 +ΛC
5 +ΛC

7 . As we see below,

we can determine the transformation law for NS-NS magnetic potential B6 in such a way

that H7 is also gauge invariant.

With this conventions for the gauge fields, the D5-brane Chern-Simons action is given

by

S(1,0) =

∫
C ∧ eF

(1,0)
, (A.9)

where the field strength F (1,0) is given by F (1,0) = dV (1,0) − B2. The gauge field V (1,0) is

transformed under the B-field gauge transformation (A.7) by

δV (1,0) = ΛB
1 . (A.10)

Before we determine the gauge invariant action for fivebrane junctions, we discuss

the (p, q) fivebrane actions. They are obtained from the D5-brane action by SL(2,Z)

transformations. We should note that some of gauge fields we defined above are not SL(2,Z)

covariant, and we should change the basis before performing SL(2,Z) transformations. The

SL(2,Z) invariant metric, the Einstein metric, is obtained by the Weyl rescaling

g̃µν = e−φ/2gµν . (A.11)

Similarly, we define SL(2,Z) covariant RR 3-form G̃3 and NS-NS 7 form H̃7 by

G̃3 = G3 + C0H3, H̃7 = H7 + C0G7. (A.12)

The 3-form field strengths (H3, G̃3) and the 7-form field strengths (G7, H̃7) are SL(2,Z)

doublets transformed by
(

G7

H̃7

)
→

(
p q

r s

)(
G7

H̃7

)
,

(
H3

G̃3

)
→

(
p q

r s

)(
H3

G̃3

)
. (A.13)

By this SL(2, Z) transformation, the complex field τ = C0 + ie−φ is transformed by

τ → τ ′ =
sτ + r

qτ + p
. (A.14)

The self-dual field strength G5 is SL(2,Z) invariant as it is.

For the potentials, we introduce the following ones:

C̃4 = C4 −
1

2
B2 ∧ C2, C̃6 = C6 −

1

6
B2 ∧ B2 ∧ C2. (A.15)

C̃4 is SL(2,Z) invariant and C̃6 forms SL(2,Z) doublet together with the NS-NS magnetic

potential B6 defined by

H̃7 = dB6 − C̃4 ∧ G̃3 −
1

6
C2 ∧ (C2 ∧ dB2 − B2 ∧ dC2). (A.16)
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The gauge transformation law for B6 which keeps the field strength H̃7 invariant is

δB6 = dΛB
5 + C2 ∧ dΛC

3 +
1

3
C2 ∧ (B2 ∧ dΛC

1 − C2 ∧ dΛB
1 ). (A.17)

Under the SL(2,Z) transformation (A.13), the two-form and six-form potentials are trans-

formed as (
C̃6

B6

)
→

(
p q

r s

)(
C̃6

B6

)
,

(
B2

C2

)
→

(
p q

r s

)(
B2

C2

)
. (A.18)

The (p, q) fivebrane action is obtained from the D5-brane action (A.9) by the replace-

ment (A.18). For example, the minimal coupling term
∫

C̃6 in the D5-brane action is

transformed as
∫

(pC̃6 + qB6). This term implies that the fivebrane possesses the fivebrane

charge (p, q). We should note that there is an ambiguity for the choice of the SL(2,Z)

element. The shift (r, s) → (r, s) + n(p, q) with arbitrary n does not change the (p, q)

charge, and thus we should have the same fivebrane action regardless of the choice of the

SL(2,Z) element. We will return to this point later.

The charge p and q obtained by the SL(2,Z) transformation are always co-prime. For

the purpose of treating coincident fivebranes, it is convenient to relax this condition, and

extend the duality group SL(2,Z) to SL(2,Q). If charges p and q is not co-prime, and

n ≡ GCD(p, q) 6= 1, the brane is regarded as a stack of n elementary branes. In this case

U(n) gauge field Â(p,q) lives on the worldvolume. We assume that the SU(n) part of Â(p,q)

vanishes and define the diagonal part A(p,q) by

A(p,q) = tr Â(p,q). (A.19)

The action of the stack of branes is obtained by SL(2,Q) transformation from the D5-brane

action. For example, the action of (n, 0) fivebrane, a stack of n D5-branes, is

S(n,0) =

∫
C ∧ tr e

bF(n,0)

=

∫ (
nC6 + C4 ∧ F (n,0) +

1

2n
C2 ∧ F (n,0) ∧ F (n,0)

+
1

6n2
C0 ∧ F (n,0) ∧ F (n,0) ∧ F (n,0)

)
, (A.20)

where

F̂ (n,0) = dV̂ (n,0) − 1nB2, F (n,0) = tr F̂ (n,0) = dV (n,0) − nB2. (A.21)

The above action is obtained as the SL(2,Q) transformation of D5-brane action with the

element (
n

1/n

)
∈ SL(2,Q). (A.22)

In what follows, we do not require the co-primeness of the charges p and q.

We here do not give the full (p, q) fivebrane action explicitly because even though it

can be obtained straightforwardly by the SL(2,Z) transformation, the expression is not

simple due to the basis change. Fortunately, we can show that the gauge transformation
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parameters ΛC , ΛB
1 and ΛB

5 are SL(2,Z) covariant without any basis change. (ΛB
1 ,ΛC

1 )

and (ΛC
5 ,ΛC

5 ) are SL(2,Z) doublets transformed as

(
ΛC

5

ΛB
5

)
→

(
p q

r s

)(
ΛC

5

ΛB
5

)
,

(
ΛB

1

ΛC
1

)
→

(
p q

r s

)(
ΛB

1

ΛC
1

)
, (A.23)

and ΛC
3 is SL(2,Z) invariant. By this reason, we only show the gauge transformations for

the (p, q) fivebrane actions obtained by the SL(2,Z) transformation of the transformation

of the D5-brane action.

The field strength F (1,0) in the D5-brane action (A.9) is invariant under the B2 gauge

transformation, and so is the action S(1,0). With respect to the RR gauge transforma-

tion (A.8), the D5-brane action is gauge invariant up to the following boundary variation:

δS(1,0) =

∫

∂D5
ΛC ∧ eF

(1,0)
2

=

∫

∂D5

(
ΛC

5 + ΛC
3 ∧ F

(1,0)
2 +

1

2
ΛC

1 ∧ F
(1,0)
2 ∧ F

(1,0)
2

)
(A.24)

From this variation, we can easily obtain the variation of the (p, q) fivebrane action. We

replace the potentials and transformation parameters according to (A.18) and (A.23), and

V (1,0) is renamed V (p,q). As the result, we obtain

δS(p,q) =

∫

∂(p,q)

(
(pΛC

5 + qΛB
5 ) + ΛC

3 ∧ F
(p,q)
2 +

1

2
(rΛB

1 + sΛC
1 ) ∧ F

(p,q)
2 ∧ F

(p,q)
2

)
(A.25)

From the gauge transformation of the gauge field (A.10), we obtain

δV (p,q) = pΛB
1 + qΛC

1 . (A.26)

Let us consider a 3-fivebrane junction consisting of three fivebranes with charges (pi, qi)

(i = 1, 2, 3). The variation arising on the junction is

3∑

i=1

δS(pi,qi) =

∫

J

(
(p1 + p2 + p3)Λ

C
5 + (q1 + q2 + q3)Λ

B
5

+ΛC
3 ∧ (F

(1)
2 + F

(2)
2 + F

(3)
2 )

+
1

2

3∑

i=1

(riΛ
B
1 + siΛ

C
1 ) ∧ F

(i)
2 ∧ F

(i)
2

)
, (A.27)

where
∫
J means the integration over the junction, and F (i) ≡ F (pi,qi).

For the cancellation of the first and second lines, we should impose the charge conser-

vation condition

p1 + p2 + p3 = q1 + q2 + q3 = 0, (A.28)

and the boundary condition for the gauge fields

F
(1)
2 + F

(2)
2 + F

(3)
2 = 0. (A.29)
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The condition (A.29) for the field strengths is satisfied if

V (1) + V (2) + V (3) = 0. (A.30)

The variation in the third line in (A.27) is canceled by introducing the following action:

SJ =
1

6∆

∫

J
(c111V

(1) ∧ F (1) ∧ F (1) + c112V
(1) ∧ F (1) ∧ F (2)

+c122V
(1) ∧ F (2) ∧ F (2) + c222V

(2) ∧ F (2) ∧ F (2)), (A.31)

where ∆ and the coefficients cijk are defined by

∆ = p1q2 − p2q1 = p2q3 − p3q2 = p3q1 − p1q3, (A.32)

and

c111 = p2(s1 + s3) − q2(r1 + r3),

c112 = 3(p2s3 − q2r3),

c122 = −3(p1s3 − q1r3),

c222 = −p1(s2 + s3) + q1(r2 + r3). (A.33)

As we mentioned above, there is the ambiguity for the choice of SL(2,Z) element when we

obtain the (p, q) fivebrane actions form the D5-brane action. Let pi, qi, ri and si be the

components of the SL(2,Z) matrices used to obtain S(pi,qi). The action (A.31) includes ri

and si, and depend on the choice of these parameters. By the shift

(ri, si) → (ri, si) + ni(ri, si), (A.34)

the action (A.31) is shifts by

SJ → SJ − 1

6

∫

J

3∑

i=1

niV
(i) ∧ F (i) ∧ F (i). (A.35)

As we mentioned above, the bulk part S(pi,qi) of the fivebrane action also shifted by (A.34).

It is given by

S(pi,qi) → S(pi,qi) +
ni

6

∫

(pi,qi)
Fi ∧ Fi ∧ Fi. (A.36)

This is precisely canceled by the shift (A.35), and the total action
∑

S(pi,qi)+SJ is invariant

under (A.34).

A convenient choice of (ri, si) is

(r1, s1) =
1

2∆
(p2 − p3, q2 − q3). (A.37)

(r2, s2) and (r3, s3) are given by similar equations with cyclically permuted indices. In this

case, the junction action becomes simple and cyclically symmetric

SJ = − 1

12∆

∫ [
(V (1) − V (2)) ∧ F (3) ∧ F (3)

+(V (2) − V (3)) ∧ F (1) ∧ F (1)

+(V (3) − V (1)) ∧ F (2) ∧ F (2)
]
. (A.38)
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The terms in this action look like electric coupling between the string charges induced by

the fluxes on the fivebranes and the gauge potentials on other branes.

In order to clarify the meaning of this action let us consider a simple case, the (1,m1)-

(−1,−m2)-(n, 0) junction. For the charge conservation, m2 − m1 = n must hold. Let us

regard two of the three semi-infinite fivebranes, the (1,m1) fivebrane and the (−1,−m2)

fivebrane, as two parts of one infinite brane separated by the junction. This is natural

especially when the coupling constant gstr is small because in this case the tensions of the

(1,m1) and (−1,−m2) branes are almost the same with the tension of NS5-brane and are

much larger than the tension of (n, 0) brane. We can treat two large-tension branes as one

NS5-brane with zero-form flux carrying the D5-brane charge m1 and m2. The gauge fields

V (m1,1) and V (−m2,−1) can be identified with the restriction of the gauge field ANS5 in two

regions.

VNS5 =

{
V (m1,1) in (m1, 1) fivebrane

−V (−m2,−1) in (−m2,−1) fivebrane
(A.39)

In this case (A.38) becomes

SJ = − 1

4n

∫
(V (1) − V (2)) ∧ F (3) ∧ F (3)

+
1

12n

∫
(V (1) ∧ F (1) ∧ F (1) − V (2) ∧ F (2) ∧ F (2)). (A.40)

The two terms in the second line can be rewritten as bulk terms, and only the first term

is essentially the boundary term. If we define the gauge field in NS5-brane on the junction

as the average of two region by

V =
1

2
(V (1) − V (2)), (A.41)

the boundary interaction becomes

S = − 1

2n

∫

J
V ∧ F (3) ∧ F (3) = −1

2

∫

J
V ∧ tr(F̂ (3) ∧ F̂ (3)). (A.42)

This represents the coupling of the D-string current on the D5-brane and the gauge fields

on NS5-branes.

B. Solution to the Maxwell equation

In this appendix, we give the solution to the Maxwell equation with a conserved current

localized on a two-dimensional plane. The solution is used in §§ 4.3 to compute the anomaly

flow.

Let j3 and F = dA be the conserved current three-form and a U(1) gauge field coupling

to the current defined in the 4689 space. They satisfy the Maxwell equation

dF = j3, d ∗ F2 = 0. (B.1)
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The conservation of j3 means that dj3 = 0, and we can define the “magnetization” two-form

M2 by j3 = dM2. In the case that j3 has its support in the 46-plane, we can take M2 as

M2 = m(x4, x6)δ(x8)dx8 ∧ δ(x9)dx9 (B.2)

with a function m defined on the 46 plane.

To solve the equations in (B.1), we start from the following ansatz:

F =
1

2π
df ∧ dψ, (B.3)

where we introduced the polar coordinates (r, ψ) by x8 + ix9 = reiψ, and f is a function of

x4, x6 and r. Because d(dψ) = 2πδ(x8)dx8 ∧ δ(x9)dx9, the exterior derivative of this field

strength has its support at r = 0:

dF = df(x4, x6, r = 0) ∧ δ(x8)δ(x9)dx8 ∧ dx9. (B.4)

Thus (B.3) satisfies dF = j3 provided that the function f satisfies the boundary condition

f(x4, x6, r = 0) = m(x4, x6). (B.5)

The other equation d ∗ F = 0 is satisfied if the function f is a solution of

(
∂2

4 + ∂2
6 + r∂r

1

r
∂r

)
f(x4, x6, r) = 0. (B.6)

The solution for (B.5) and (B.6) is obtained by using the Green function as

f(x4, x6, r) =
1

π

∫
dx

∫
dy

r2m(x, y)

[(x4 − x)2 + (x6 − y)2 + r2]2
. (B.7)

We can give the potential for the field strength F in (B.3) as

A =
1

2π
fdψ (B.8)

On the 46-plane, the gauge potential is proportional to the magnetization.

A|r=0 =
1

2π
m(x, y)dψ, (B.9)

In §§ 4.3 we need the solution to (B.1) with a current in the form

j3 =

∫ 2π

0
dφρ(φ)δ3(Lφ). (B.10)

For this current, the magnetization is given by

m(φ) =
1

2π

∫
dφ′ρ(φ′)[[φ − φ′ − π]] + c, (B.11)

where c is an integration constant.
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